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Abstract 
 
 
The recent demonstration that massive scale chromosomal shattering or pulverization can 

occur abruptly due to errors induced by interference with the microtubule machinery of the 

mitotic spindle followed by haphazard chromosomal annealing, together with sophisticated 

insights from epigenetics provide profound mechanistic insights into some of the most 

perplexing classical observations of addiction medicine including cancerogenesis, the 

younger and aggressive onset of addiction-related carcinogenesis, the heritability of addictive 

neurocircuitry and cancers, and foetal malformations.  Moreover the complementation of 

multiple positive cannabis-cancer epidemiological studies, and replicated dose-response 

relationships with established mechanisms fulfils causal criteria.  Rising community 

exposure, tissue storage of cannabinoids, and increasingly potent phytocannabinoid sources 

suggests that the threshold mutagenic dose for cancerogenesis will increasingly be crossed 

beyond the developing world, and raise transgenerational transmission of teratogenicity as an 

increasing concern. 

 
 
 
  



In a remarkable and highly celebrated report, the Pellman lab recently showed that severe 
chromosomal fragmentation involving dozens of double stranded breaks, and subsequent 
apparently random and disordered repair of some of the fragments, could rapidly occur 
during the DNA synthetic phase (G2 and S-phases) of the mitotic cell cycle if chromosomes 
became isolated from the main nuclear mass 1.  In this technical tour de force high resolution 
DNA sequencing of single cells and live cell imaging was deployed to show that 
chromosomes which had become detached from the mitotic spindle or chromosomes which 
lagged behind in their DNA replication, became isolated in micronuclei, where, lacking the 
normal full complement of replication and repair enzymes, the DNA became shattered in the 
process of disordered and dysregulated replication.  Such damage could become amplified in 
subsequent rounds of cell division, where the isolated chromosomes could also become 
joined up with those of the main nucleus.  Where two or a few chromosomes were trapped 
together in such a micronucleus random exchange could occur between them.  Chromosome 
“pulverization” was first described in 1967 due to experimental viral infection 2.  The process 
had previously been named “chromothripsis” for chromosomal shattering  at hundreds 3 or 
thousands 4 of loci; and a milder form was called “chromoplexy” (chromosomal tangles or 
braids) 5.  Extraordinarily, this process was shown to proceed as rapidly as within 16 hours 1.   
 
This remarkable result at once resolved a long standing paradox in cancer research as to how 
such a dramatic events could arise when the normal fidelity of DNA replication occurs with 
an error (mutation) rate of only 10-8  , and the rate in germ stem cells is one hundred times 
lower; and also simultaneously provided an elegant mechanism for the high rate of 
aneuploidy (80%), tetraploidy (40%), micronuclei, chromosomal fragments and abnormal 
chromosomes (truncated arms, chain and ring chromosomes and double minute circles 6) 
which are frequently seen in malignant tissues 7.  Tetraploidy itself has been shown to 
increase chromosomal instability, tolerance of mitotic errors and the multidrug resistance 
typical of transformed and tumour cells and even the anchorage-independent growth of non-
transformed cells 7. 
 
In addition to cancer, such chromothriptic events have also been shown in various congenital 
abnormality syndromes 8-14. 
 
The cell cycle has numerous check points which are designed to prevent such genetically 
catastrophic events from occurring.  The mitotic spindle assembly checkpoint (SAC) in 
particular requires all chromosomes to be attached to the spindle, and sister replicates to be 
attached at their kinetochores with opposing polarity (bi-orientation) to bundles of 
microtubules of the mitotic spindle which will draw them to opposite poles of the cell 15.  
Mostly errors in this complicated machinery 16-19 generate cell cycle arrest, apoptosis, or the 
irreversible entry into cellular senescence 7.  But delay at the SAC is not indefinite 15.   Some 
cells slip back as tetraploid cells into interphase, and a very few escape cell cycle controls 
altogether.  This can particularly occur when chromothriptic events involve the functional 
silencing of such major tumour suppressor genes as TP53 (P53) and CDKN2A (P16INK4A) 
which normally sense and amplify such cellular and senescence checkpoints 20.  Hence the 
usual outcome of such events at the tissue level is growth arrest via apoptosis, senescence or 
cell cycle delay 21, and occasionally malignant transformation where the malignant clone may 
have a growth advantage 7,22. 
 
The pathway described by the Boston group 1 was therefore inhibition of spindle dynamics / 
failure of spindle attachment / micronuclear formation / chromosomal shattering or 
pulverization / haphazard chromosomal annealing by non-homologous end joining or 



microhomology-mediated break-induced replication then cell cycle arrest or occasionally and 
alternatively, oncogenic transformation 3,12,20,22-25.  It has been described as occurring in about 
2-3% of cancers, including melanoma, sarcoma, lung, thyroid, oesophageal and renal cancers 
4, although it is seen much more commonly in cancers of the bone (25%) 20,26, brain (39%) 
27,28, bowel 29 and a majority of prostate tumours 5.  It has also been said to be more common 
in cancer per se, as the technical difficulties in unravelling the enormous complexities in 
sequencing errors to which it gives rise are only beginning to be probed 5,22,24,26,27,29,30.   Its 
presence and severity correlate with poor prognostic outcomes 27,30.  Progressive 
chromosomal instability instigated or assisted by chromothriptic and disorderly mitotic 
mechanisms also explain the usual tendency of tumours to become increasingly aggressive 26.  
Curiously single cell chromothripsis has also been shown on occasion to cure rare genetic 
disorders 31.   
 
The Boston work also focussed attention on the extraordinarily complicated machinery 
associated with the microtubules comprising the mitotic spindle.  Microtubules are made up 
primarily of α- and β- tubulin dimers which, together with their numerous associated proteins 
are highly polymerized into microtubules which grow (“rescue”) and shrink (“catastrophe”) 
and probe the internal cytoplasmic space of the cell, and form the highly dynamic framework 
(“dynamic instability”) upon which the chromosomal separation of anaphase occurs 15,18.  
Whilst the microtubules appear to be static on fixed cell fluorescent imaging, in many tissues 
they are actually lengthening at their plus ends (centrally) whilst simultaneously 
disassembling at their minus ends at the centriole (“treadmilling”) to give rise to an overall 
poleward flux 15.  In particular the Dana Farber / Harvard studies highlighted the way in 
which agents which interfere with tubulin polymerization or their dynamic instability can 
have major downstream ramifications 1.  This result has been shown both for various genetic 
disruptions 7,32,33 and chemical toxins.  The Boston studies used nocodozole to induce cell 
cycle arrest 1, which acts by binding tubulin subunits and preventing their polymerization 15.  
Vincristine, vinblastine and colchicine act similarly 15.  The chemotherapeutic agent taxol 
acts by binding to and stabilizing microtubules, inhibiting their dynamic instability 15.   
 
So too does Δ-9 tetrahydrocannabinol (THC) 34-37 and other cannabinoids 38.  Importantly it 
has been shown that a 2 hour exposure to 5 and 10 µM of THC reduced tubulin mRNA by 
50% & 78% 36.  Recapitulating many of the key features of the above findings THC has been 
shown to interfere with tubulin polymerization 34,39, be associated with micronuclear 
formation (4-6 fold increase) 21,40-45, cause growth arrest in tissues 46,47, be linked with gross 
chromosomal morphological abnormalities (breaks, chains, rings, deletions, inversions, 
double minutes 21,40,42,45,48-53 ), induce chromosomal translocations 42,43,45,48,53 , cause multiple 
pronuclear divisions in anaphase as opposed to the normal bi-pronuclear separation, be linked 
with anaphase chromatin bridge formation 25,40,44 , aneuploidy 43,44,54, errors of chromosomal 
segregation 25,44, and abnormalities of nuclear morphology 25,44,45,53,55 .  Heritable ring and 
chain translocations and aneuploidy in germ cells has also been shown 43,51.  Major 
chromosomal aberrations and micronuclei have been shown in diverse tissues in humans 
including circulating lymphocytes in cannabis users 43 , lymphocytes stimulated in vitro 40,54 , 
polychromatic erythrocytes 43,45 , bone marrow cells 41,43,45 , lung cells 21,52 and human sperm 
43,55 .  Interestingly THC concentrations of 20 µM reduced the other key component of the 
intracellular cytoskeleton actin mRNA levels by 40%, and interactions between the centriole 
and the sub-cortical actin cloud has recently been shown to play a key role in the correct 
orientation of the centrosomes during mitosis 56. 
 



One important observation to emerge from these studies is the interesting and non-linear dose 
response kinetics of cannabis in mutagenicity and genotoxicity studies.  Low dose THC and 
other cannabinoids has been found both in vitro (<5µg/ml or <5µmol/l) and in clinical studies 
(<1 joint / day) to be rarely associated with genotoxically mediated adverse outcomes 36,37,40-

42,44,47-49,57-60.  Serum levels of 1mmol/l have been reported after recreational use 61. 
 
Importantly cannabis use has also been positively associated in epidemiological studies with 
several cancers including aerodigestive cancers (head and neck 62, larynx, lung 63-65), 
leukaemia, brain 66, prostate, cervix, testes 67 and bladder cancer 68,69.  Parental cannabis 
exposure during pregnancy has also been associated with the emergence in their young 
children (<5 years) of rhabdomyosarcoma 69, neuroblastoma 70 and acute myelomonocytic 
leukaemia 71.  The relative risk of such tumours is usually found to be 2-6 fold increased.  
Importantly these cannabis-related tumours in adults are often said to occur at much younger 
ages than those seen in non-users, and to be more highly aggressive 72,73.  In several cases a 
dose related response has been shown 65,67,71,74, which, together with a plausible biological 
mechanism, implies causality.  The present explication of the mechanics of chromothripsis 
now provides a mechanism to account for such diverse and repeated findings.   These 
mechanisms exist in addition to the mutagenic and free radical content of cannabis smoke 
52,75,76 and its ability to activate pre-carcinogens 21,69,75,77. 
 
It should be noted that not all such studies of mutagenesis in cannabis exposed individuals 
have been positive.  Such diversity of outcomes relates to both in vitro and in vivo preclinical 
and clinical studies.  One major limitation of many studies performed in western nations is 
the very limited cannabis exposure which is usually described amongst the individuals in 
these reports.  Indeed in one report “heavy cannabis use” was defined as more than 0.89 
joints per day  , and in another a lifetime exposure of more than 30 joint years (one joint per 
day for 30 years) was said to be heavy 77.  Conversely, studies from the developing world 
have quantitatively much greater cannabis exposures, and generally report a positive 
association.    
 
One widely quoted negative study of cannabis carcinogenesis from California compared 
cancer cases and controls matched for age, sex and region 77.  In both groups the cannabis 
exposure was similar.  Whilst this is a carefully matched design, the apparently serendipitous 
matching of cannabis exposure implied that it was not able address the central research 
question relating to altered cancer outcomes of exposed and non-exposed individuals.  Its 
negative finding was therefore not surprising.  Furthermore the statistical analytic method 
employed in the study systematically excluded subjects exposed to high doses of cannabis to 
minimize outlier effects.  If one correctly understands the addictive nature of cannabis and 
the highly non-linear dose-response shown in numerous cellular and preclinical genotoxicity 
assays, it is these higher dose exposures which are of the greatest interest, and are also most 
likely to carry important statistical signals.    
 
Cannabis has also been associated with foetal abnormalities in many studies including low 
birth weight, foetal growth restriction, preterm birth spontaneous miscarriage 46,51,58,59,78, 
microotia / anotia, microphthalmia / anophthalmia, spina bifida, meningomyelocoele, 
anencephaly, cardiac defects including in particular cardiac septal defects, gastroschisis and 
many others 46,79.  Phocomelia (short or truncated forelimbs) has also been shown in testing in 
a similar preclinical model (hamster) to that which revealed the teratogenicity of thalidomide 
46.  Dose-related effects were found 46,59,78.  Whilst these defects appear disparate and diverse, 
they all bear in common an arrest of cell growth and cell migration at critical developmental 



stages, consistent with the inhibition of mitosis noted with cannabis by various mechanisms.  
Parental cannabinoid exposure has also been linked to impaired intellectual performance, 
concentration hyperactivity and executive function amongst child and adolescent offspring 
exposed in utero 47,80-82   . 
 
THC has also been shown to inhibit mitochondria after both in vitro and in vivo exposure of 
lung cells, brain cells and sperm in part by increasing their expression of uncoupling protein 2 
60,81,83-87.  Cannabis pyrollysates (partially burnt products of the smoked plant) also increase 
oxidative stress on many tissues 52,57,75.  These findings are important for several reasons.  
Oxidative stress is one of the leading theories of the causes of ageing and mutagenesis 88-92.  
Energy generation is important for cells to cope with oxidative stress.  Therefore the 
induction of increased oxidative stress coupled with reduced energy production and increased 
electron leak and production of free radical species (and in many tissues reduced transcription 
of anti-oxidant defence proteins 75) is a powerful double edged pro-ageing insult.  
Mitochondrial dysfunction is also one of the key hallmarks of cellular ageing 93-95.  This is 
also consistent with our own unpublished data of increased cardiovascular ageing (as a major 
surrogate for organismal aging) in cannabis exposed patients compared to both controls and 
tobacco-only smokers in both cross-sectional and longitudinal studies (unpublished data). 
 
Moreover cell division and DNA and chromosomal replication are very energy intensive 
processes.  Perhaps unsurprisingly mitotic errors including chromosomal mis-segregation 
have been shown to be more common in older cells 95.  Importantly it has also been shown 
that improved energy production from aged oocyte mitochondria is associated with improved 
functional fidelity of the meiotic machinery and reduced errors of meiosis in female gametes 
and reduced subsequent conceptus loss 95.   Meiosis in ova is relatively error prone 17,95,96.  
Cannabis has been shown to greatly increase the rate of zygote death after the first cell 
division by 50% 25.  The demonstration of sperm mitochondrial functional impairment 60 is 
similarly of great concern as it implies increased meiotic errors with the potential for 
transmission to subsequent generation/s.  Cannabinoids have also been shown to importantly 
mediate several sperm specific critical genetic functions via CB1R including DNA nicking in 
preparation for tight packing, the re-packaging of DNA from histones to transitional proteins 
and then to protamines, and protection of packaged DNA 97,98.  Cannabinoids also play key 
functions in the reproductive tract, where they modify sperm activity, hypermotility and 
penetration, acrosome exocytosis and egg penetration 60,99,100.   Cannabinoids and CB1R are 
present at high concentration in the oviduct and Graafian follicle 60.   Exogenous 
cannabinoids have been shown to act as partial functional antagonists and disruptors of these 
natural yet critical endocannabinoid reactions 34,60,97,99.   
 
Microtubules are also essential to many other cell functions notably in stem cell niches and in 
neurons.  It has been shown that the cell cycle, particularly in S and G2 phases, governs the 
human embryonic stem cell decision relating to the exit from pluripotency to cell 
differentiation (via a P53 / ATM-ATR / CHEK2  / CyclinB1 / TGFβ / Nanog spindle 
checkpoint pathway) 101, and that microtubule structures (nanotubes) mediate the spreading of 
deterministic molecular signals (bone morphogenetic protein ligand decapentaplegic) from 
germ line niche cells to neighbouring stem cells (where it binds to its receptor Thickveins) 
and thus limit the stem cell maintenance signal to germ stem cells with which the hub support 
cells are in immediate contact 102.   Neuronal axons contain long microtubule bundles which 
can be up to one meter in length.  Axons rapidly transport nutrients and proteins along using 
dynein and kinesin microtubule-based motors at speeds of up to 1 micron/second 15.  Hence 
THC based disruption of microtubular function has been associated with loss of axonal 



direction finding and an increase in target location errors, and errors of axonal sprouting 34,37.  
Importantly detailed cannabinoid physiology changes in the brain during in utero 
development and is disrupted by exogenous cannabinoids 47.  As in sperm development, the 
endocannabinoid system plays a key role in such major brain developmental processes as cell 
proliferation, neurogenesis, migration and axon pathfinding via CB1R, CB2R, TRPV1R, 
GPR55 and PPARα signalling and exophytocannabinoids act as partial antagonists and 
functional disruptors of this finely tuned system 47.  Hippocampal volume was found to be 
reduced in young adolescents following in utero exposure to cannabis, as have lasting 
alterations in glutamate, GABA, opioid serotonin and cholinergic muscarinic and nicotinic 
brain signalling 47,103. 
 
These effects of cannabinoids explain the confusing and paradoxical effects of cannabis in 
cancer.  Various cannabinoids have been proposed to have possible therapeutic effects on 
tumours and tumour growth in part by inhibition of DNA synthesis 43,50,104-107 but, as noted 
above, cannabinoids have also been linked epidemiologically with carcinogenesis.  The 
effects of cannabis on tubulin and its association with cell growth inhibition explain these 
paradoxes – both can be true.  Both cell cycle inhibition and arrest of cell growth, and 
occasional mutant cell escape via chromothriptic malignant induction can occur, both related 
to cannabis – tubulin interactions and in a dose dependent manner.  Interestingly the function 
of the critical SAC checkpoint has been shown to be reduced in tetraploid cells due to TP53 
suppression, so such environments may make both error prone chromosomal replication, and 
escape from the normal cell cycle controls, more common 7. 
 
 
Just as THC has been convincingly shown to be a mitotic poison 25,44,45,59,108-110 thalidomide 
has now been shown to have a similar effect.  Thalidomide is well known to have been linked 
with major teratogenic defects including phocomelia 111,112. Its spectrum of foetal 
malformations overlaps significantly with those ascribed to cannabis and includes cardiac 
septal defects, neural tube closure defects, haemangiomas, microtia / anotia and 
microphthalmia / anophthalmia, and bowel defects 112.  While its mechanism of action is not 
completely understood 113,114, it has been shown to bind tubulin and interfere with mitosis 
with an affinity approximately an order of magnitude greater than that of THC 108,115.  
Thalidomide and its derivatives are now being increasingly used in cancer therapy 
particularly for myeloma 110,116.  Interestingly the leading theory of thalidomide teratogenesis 
relates to the inhibition of angiogenesis 113,117.  Blood vessels and nerves are known to grow 
together during the ontogeny of limb and body pattern development, so that interference with 
normal axonal tubulin dynamics could well have a inhibitory function on the accompanying 
vascular egress which normally occurs.  Thalidomide has previously been discussed as a 
possible epigenetic transgenerational mutagen by Holliday, and reports also exist of cancers 
in exposed offspring 118.  Interestingly it was also marketed as a sedative, and for nausea and 
vomiting and as an analgesic 113,116. 
 
Interestingly similar comments can be made about several other addictions.  Dependency 
syndromes associated with alcohol, tobacco, opioids and benzodiazepines have been 
associated with tumourigenesis 119-125.  Dependency on alcohol, benzodiazepines, opioids, 
cocaine and amphetamine has been linked with adverse morphological and developmental 
outcomes in children exposed in utero .  Most chemical addictions are associated with foetal 
growth restriction 47,80,126, and many are associated with neurological or intellectual 
impairment in children exposed in utero 127.  Importantly opioids 128,129, alcohol 130,131, 
amphetamine 132, nicotine 133,134 and cocaine 135 have been shown to interact with tubulin 



polymerization and/or microtubule associated proteins.  Indeed interference with tubulin 
dynamics now provides a mechanism whereby environmental agents do not need to be 
directly mutagenic to DNA bases or clastogenic to chromosomes themselves, but can 
nonetheless have a devastating effect on the integrity of the genetic information by interfering 
with the cellular machinery of mitosis and meiosis in gametes 43. Indeed all addictive drugs 
have been shown to interfere with mitosis 136 and to be genotoxic 137.   
 
It will also be noted that the discussion to this point has not considered the epigenetic 
revolution which is rapidly overtaking medicine.  The origins of the Barker hypothesis of the 
foetal origins of adult disease has been attributed to the observation of the increased 
incidence of cardiovascular disease in children born to women exposed to the post-war 
famine in England 138,139.  Since that time many environmental agents have been linked with 
epigenetic change including alcohol 140-142, cocaine 143-148, amphetamine 149-152, opioids 153-156 
and cannabinoids 41,58,157,158.  Indeed epigenomic changes have also been described with 
behavioural addictions such as gambling 159, and with stress exposure 160-164 which is a major 
common factor shared amongst all addictive syndromes.  Whilst some epigenetic changes 
have been shown to be reversible in the short term 163 others have been shown to be passed on 
to offspring for three to four subsequent generations 165-167 via epigenetic modifications in 
oocytes and sperm 153,167-169.  Transgenerational transmission of epigenetic change through 
altered sperm DNA methylation has also been shown for cannabinoids in rats 157,170,171 and 
humans 172-174.  The well known immunmodulatory actions of cannabinoids also impact brain 
structure at sensitive developmental stages 61,175,176, and be transferred to offspring 
epigenetically 61.  Since cannabinoids have long been known to selectively suppress nuclear 
histone mRNA and protein expression 43,50,177,178, alter the RNA transcriptome 157,171,179, and 
modify DNA methylation in key brain reward areas 157,170 thereby modifying all the main 
epigenomic regulatory systems, it seems inevitable that we are on the threshold of an exciting 
time to learn more about heritable pathways to genotoxic disease.  Epigenetic inheritance has 
also been linked with paediatric gliomagensis 180.  Normal developmental 181 and ageing 
changes 182,183, cellular lineage specification amongst different tissues 181, single cell memory 
formation 61,183-185 and complex disease origins have been attributed in large part to 
epigenetic changes 186. 
 
As mentioned above high dose cannabis and THC test positive in many genotoxicity assays, 
albeit often with a highly non-linear threshold like effects above low doses.  As long ago as 
2004 it was said that 3-41% of all neonates born in various North American communities had 
been exposed to cannabis 172.  Since cannabis is addictive 187, is becoming more potent 
74,82,188, quickly builds up in adipose tissues 61,79, and seems generally to becoming more 
widely available under fluid regulatory regimes 187,189, real concern must be expressed that 
the rising population level of cannabinoid exposure will increasingly intersect the toxic 
thresholds for major genotoxicity including chromosomal clastogenicity secondary to 
interference and premature aging of the mitotic apparatus.  Under such a conceptualization, it 
would appear that the real boon of restrictive cannabis regimes 190 is not their supposed 
success in any drug war, but their confinement in the populations they protect to a low dose 
exposure paradigm which limits incident and transgenerational teratogenicity, ageing, mental 
retardation and cancerogenicity.   
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