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a b s t r a c t

The recent demonstration that massive scale chromosomal shattering or pulverization can occur abruptly
due to errors induced by interference with the microtubule machinery of the mitotic spindle followed by
haphazard chromosomal annealing, together with sophisticated insights from epigenetics, provide pro-
found mechanistic insights into some of the most perplexing classical observations of addiction medicine,
including cancerogenesis, the younger and aggressive onset of addiction-related carcinogenesis, the her-
itability of addictive neurocircuitry and cancers, and foetal malformations. Tetrahydrocannabinol (THC)
and other addictive agents have been shown to inhibit tubulin polymerization which perturbs the for-
mation and function of the microtubules of the mitotic spindle. This disruption of the mitotic machinery
perturbs proper chromosomal segregation during anaphase and causes micronucleus formation which
is the primary locus and cause of the chromosomal pulverization of chromothripsis and downstream
genotoxic events including oncogene induction and tumour suppressor silencing. Moreover the comple-
mentation of multiple positive cannabis-cancer epidemiological studies, and replicated dose-response
relationships with established mechanisms ful�ls causal criteria. This information is also consistent with
data showing acceleration of the aging process by drugs of addiction including alcohol, tobacco, cannabis,
stimulants and opioids. THC shows a non-linear sigmoidal dose-response relationship in multiple per-
tinent in vitro and preclinical genotoxicity assays, and in this respect is similar to the serious major
human mutagen thalidomide. Rising community exposure, tissue storage of cannabinoids, and increas-
ingly potent phytocannabinoid sources, suggests that the threshold mutagenic dose for cancerogenesis
will increasingly be crossed beyond the developing world, and raise transgenerational transmission of
teratogenicity as an increasing concern.

© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Chromosomal Pulverization.
Original Report of Chromosomal Pulverization. Figure 7 , Kato H., Sandberg AA
(1967). “Chromosome Pulverization in Human Binucleate Cells. Following Colcemid
Treatment.” J. Cell Biol. 34 (1): 35–45. Re-used by permission.

1. Introduction to seminal paper

In a remarkable and highly celebrated report, the Pellman lab
recently showed that severe chromosomal fragmentation involving
dozens of double stranded breaks and subsequent apparently ran-
dom and disordered repair of some of the fragments, could rapidly
occur during the DNA synthetic phase (G2 and S-phases) of the
mitotic cell cycle, if chromosomes became isolated from the main
nuclear mass [1] . In this technical tour de force, high resolution
DNA sequencing of single cells and live cell imaging was deployed
to show that chromosomes which had become detached from
the mitotic spindle or chromosomes became isolated in micronu-
clei, where, lacking the normal full complement of replication and
repair enzymes, the DNA became shattered in the process of dis-
ordered and dysregulated replication. Such damage could become
propagated through subsequent rounds of cell division, where the
isolated chromosomes could also become joined up with those of
the main nucleus. Where two or a few chromosomes were trapped
together, in such a micronucleus random exchange could occur
between them. Chromosome “pulverization” was �rst described in
1967 due to experimental viral infection [2] (Figs. 1 and 2 ). The pro-
cess has recently been named “chromothripsis” for chromosomal
shattering at hundreds [3] or thousands [4] of loci; and a milder
form was called “chromoplexy” (chromosomal tangles or braids,
Fig. 3) [5] . Extraordinarily, this process was shown to proceed as
rapidly as within 16 h [1] .

This remarkable result immediately resolved a long standing
paradox in cancer research as to how such dramatic event could
arise when the normal �delity of DNA replication occurs with an
error (mutation) rate of only 10 � 8 , and the rate in germ stem cells
is one hundred times lower. It also simultaneously provided an

elegant mechanism for the high rate of micronuclei, chromoso-
mal fragments and abnormal chromosomes (truncated arms, chain
and ring chromosomes and double minute circles [6] ) which are
frequently seen in malignant tissues ( Fig. 4)[7] . Tetraploidy itself
has been shown to increase chromosomal instability, tolerance of
mitotic errors and the multidrug resistance typical of transformed
and tumour cells and even the anchorage-independent growth of
non-transformed cells [7] .

In addition to cancer, such chromothriptic events have also been
shown in various congenital abnormality syndromes [8–14] .

2. Dynamics of the cell cycle

The cell cycle has numerous check points which are designed to
prevent such genetically catastrophic events from occurring. The
mitotic spindle assembly checkpoint (SAC) in particular requires
all chromosomes to be attached to the spindle, and sister repli-
cates to be attached at their kinetochores with opposing polarity
(bi-orientation) to bundles of microtubules of the mitotic spindle
which will draw them to opposite poles of the cell [15] . Mostly
errors in this complicated machinery [16–19] generate cell cycle
arrest, apoptosis, or the irreversible entry into cellular senescence
[7] . But delay at the SAC is not inde�nite [15] . Some cells slip
back as tetraploid cells into interphase and a very few escape cell
cycle controls altogether. This can particularly occur when chro-
mothriptic events involve the functional silencing of such major
tumour suppressor genes as TP53 (P53) and CDKN2A (P16INK4A),
which normally sense and amplify such cellular and senescence
checkpoints [20] . Other genetic causes (mutations, insertions and
deletions) also exist for tumour suppressor gene silencing. Hence
the usual outcome of such events at the tissue level is; growth arrest
via apoptosis, senescence or cell cycle delay [21] , and occasionally
malignant transformation where the malignant clone may have a
growth advantage [7,22] .

The pathway described by the Boston group [1] was
therefore inhibition of spindle dynamics/failure of spindle attach-
ment/micronuclear formation/chromosomal shattering or pulver-
ization/haphazard chromosomal annealing by non-homologous
end joining or microhomology-mediated break-induced repli-
cation, then cell cycle arrest or occasionally and alternatively,
oncogenic transformation [3,12,20,22–25] . Chromothripsis has
been described as occurring in about 2–3% of cancers including
melanoma, sarcoma, lung, thyroid, oesophageal and renal cancers
[4] , although it is seen much more commonly in cancers of the
bone (25%) [20,26] , brain (39%) [27,28] , bowel [29] and a majority
of prostate tumours [5] . It has also been said to be more com-
mon in cancer per se, as the technical dif�culties in unravelling
the enormous complexities in sequencing errors to which it gives
rise are only beginning to be probed [5,22,24,26,27,29,30] . Its pres-
ence and severity correlate with poor prognostic outcomes [27,30] .
Progressive chromosomal instability instigated or assisted by chro-
mothriptic and disorderly mitotic mechanisms also explain the
usual tendency of tumours to become increasingly aggressive [26] .
Curiously single cell chromothripsis has also been shown on occa-
sion to cure rare genetic disorders [31] .

The Boston work [1] also focussed attention on the extraordi-
narily complicated machinery associated with the microtubules
comprising the mitotic spindle. Microtubules are primarily made
up of a - and b - tubulin dimers which, together with their numer-
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Fig. 2. Chromosomal Pulverization in Micronuclei. (For interpretation of the references to colour in this �gure legend, the reader is referred to the web version of this article.)
Caption: Pulverization of chromsome 1 after nocodozole release (a); (b) SKY pseudocolour;
(c) Ordered SKY karyotype; (d)–(f) Pulverization of chromsome 16 similarly imaged (as in (a)–(c).(g) A BrdU positive (red) micronucleus (DNA white); (h) Selective labelling of
(red) pulverized Chromsome; (i) Percent cells with intact (blue) or pulverized (red) chromsomes in micronuclei from control or nocodozole released cells. Fate of micronucleus
(photoconverted green to red) through Anaphase (Top row) – re-incorporation into primary nucleus; (Bottom row) No re-incorporation.
From: Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdury D, Pellman D (2012), “DNA Breaks and Chromsome Pulverization
from Errors in Mitosis.”Nature 482 (7383): 53–58. Figure 5. Re-used by Permission.

ous associated proteins, are highly polymerized into microtubules
which grow (“rescue”) and shrink (“catastrophe”) and probe the
internal cytoplasmic space of the cell, and form the highly dynamic
framework (“dynamic instability”) upon which the chromosomal
separation of anaphase occurs [15,18] . Whilst the microtubules
appear to be static on �xed cell �uorescent imaging, in many tissues
they are actually lengthening at their plus ends (centrally) whilst
simultaneously disassembling at their minus ends at the centri-
ole (“treadmilling”) to give rise to an overall poleward �ux [15] . In
particular the Dana Farber/Harvard studies highlighted the way in
which agents which interfere with tubulin polymerization or their
dynamic instability can have major downstream rami�cations [1] .
This result has been shown both for various genetic disruptions
[7,32,33] and chemical toxins.

3. Mitotic spindle poisons

The Boston studies used nocodozole to induce cell cycle arrest
[1] which acts by binding tubulin subunits and preventing their
polymerization [15] . Vincristine, vinblastine and colchicine act sim-
ilarly [15] . The chemotherapeutic agent taxol acts by binding to and
stabilizing microtubules, inhibiting their dynamic instability [15] .

Of signi�cance and concern 1 -9 tetrahydrocannabinol (THC)
[34–37] and other cannabinoids [38] act similarly to taxol. Impor-
tantly it has been shown that a 2 h exposure to 5 and 10 mM of THC
reduced tubulin mRNA by 50% & 78% [36] . Recapitulating many
of the key features of the above �ndings, THC has been shown
to interfere with tubulin polymerization [34,39] , be associated
with micronuclear formation (4–6 fold increase) [21,40–45] , cause
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Fig. 3. Diagrams of Chromoplexy & Chromothripsis.
From Figure 1, Shen MM “Chromoplexy: a new category of compex rearrangements in the cancer genome.”Cancer Cell 23 (5): 567–569. Re-used by permission.

Fig. 4. Oncogene Driver Formation.
Chromothriptic Formation of Oncogenes. Figure 5 from Baca S.C., Prandi D., Lawrence M.S., Mosquera J.M., Romanel A., Drier Y., Park K., Kitayabashi N., MacDonal T.Y., Ghandi
M., Van Allen E. “Puncutated Evolution of Prostate Cancer Genomes” (2013) Cell 153 (3) 666–677. Re-used by permission.

growth arrest in tissues [46,47] , be linked with gross chromoso-
mal morphological abnormalities (breaks, chains, rings, deletions,
inversions, double minutes [21,40,42,45,48–53] ), induce chromo-
somal translocations [42,43,45,48,53] , cause multiple pronuclear
divisions in anaphase as opposed to the normal bi-pronuclear
separation, be linked with anaphase chromatin bridge forma-
tion [25,40,44] , aneuploidy [43,44,54] , errors of chromosomal
segregation [25,44] , and abnormalities of nuclear morphology
[25,44,45,53,55] . Heritable ring and chain translocations and

aneuploidy in germ cells has also been shown [43,51] . Major
chromosomal aberrations and micronuclei have been shown in
diverse tissues in humans including circulating lymphocytes in
cannabis users [43] , lymphocytes stimulated in vitro [40,54] , poly-
chromatic erythrocytes [43,45] , bone marrow cells [41,43,45] , lung
cells [21,52] and human sperm [43,55] . Interestingly a UCLA group
reported �eld cancerization and a super-multiplicative interac-
tion between cannabis exposure and chromosomal breaks in a
bleomycin-induced stimulated circulating lymphocyte clastogenic
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Fig. 5. Comparative Non-Linear Dose-Response Kinetics of THC and Thalidomide.
Data from Table 2, Single day exposure, Zimmerman A.M. and Raj Y. 1980, “In�uence
of Cannabinoinds on Somatic Cells in vivo”, Pharmacology 21 (4): 277–287.

assay in a case-control study of head and neck cancer [56] . Fur-
thermore THC concentrations of 20 mM reduced the other key
component of the intracellular cytoskeleton actin mRNA levels by
40%, and interactions between the centriole and the sub-cortical
actin cloud has recently been shown to play a key role in the correct
orientation of the centrosomes during mitosis [57] .

4. Non-linear dose-response kinetics

One important observation to emerge from these studies is the
non-linear dose response kinetics of cannabis in mutagenicity and
genotoxicity studies ( Fig. 5). Low dose THC and other cannabinoids
have been found both in vitro (<5 mg/ml or <5 mmol/l) and in clinical
studies (<1 joint/day) to be rarely associated with genotoxically
mediated adverse outcomes [36,37,40–42,44,47–49,58–61] . Serum
levels of 1 mmol/l have been reported after recreational use [62] .

5. Cannabis cancerogenesis

Importantly cannabis use has also been positively associated in
epidemiological studies with several cancers including aerodiges-
tive cancers (head and neck [56] , larynx, lung [63–65] ), leukaemia,
brain [66] , prostate [67] , cervix, testes [68] and bladder cancer
[69–71] . Parental cannabis exposure during pregnancy has also
been associated with the emergence of rhabdomyosarcoma [70] ,
neuroblastoma [72] and acute myeloid leukaemia [73,74] in their
young children (<5 years). The relative risk of such tumours is
usually found to be 2–6 fold increased. Importantly these cannabis-
related tumours in adults are often said to occur at much younger
ages than those seen in non-users, and to be more highly aggres-
sive [75,76] . In several cases a dose related response has been
shown [56,65,68,71,73,77] , which, together with a now plausible
biological mechanism, implies causality. The present explication of
the mechanics of chromothripsis, presumably occurring during in
utero development, now provides a mechanism to account for such
diverse and repeated �ndings. These mechanisms exist in addi-
tion to the mutagenic and free radical content of cannabis smoke
[52,78,79] and its ability to activate pre-carcinogens [21,70,78,80] .

It should be noted that not all such studies of mutagenesis in
cannabis exposed individuals have been positive. Such diversity of
outcomes relates to both in vitro and in vivo preclinical and clinical
studies. One major limitation of many studies performed in western
nations is the very limited cannabis exposure described amongst
individuals in these reports. Indeed in one report “heavy cannabis
use” was de�ned as more than 0.89 joints per day, and in another
a lifetime exposure of more than 30 joint years (one joint per day
for 30 years) was said to be heavy [80] . Conversely, studies from

the developing world have quantitatively much greater cannabis
exposures, and generally report a positive association.

One widely quoted negative study of cannabis carcinogenesis
from California compared cancer cases and controls matched for
age, sex and region [80] . In both groups the cannabis exposure
was similar. Whilst this is a carefully matched design, the appar-
ently serendipitous matching of cannabis exposure implied that it
was not able to address the central research question relating to
altered cancer outcomes of exposed and non-exposed individuals.
Its negative �nding was therefore not surprising. Furthermore the
statistical analytic method employed in the study systematically
excluded subjects exposed to high doses of cannabis to minimize
outlier effects. If one correctly understands the addictive nature of
cannabis and the highly non-linear dose-response shown in numer-
ous cellular and preclinical genotoxicity assays, it is these higher
dose exposures which are of the greatest interest, and are also most
likely to carry important statistical signals.

6. Cannabis teratogenicity

Cannabis has also been associated with foetal abnormalities in
many studies including low birth weight, foetal growth restric-
tion, preterm birth spontaneous miscarriage [46,51,59,60,81] ,
microotia/anotia, microphthalmia/anophthalmia, spina bi�da,
meningomyelocoele, anencephaly, cardiac defects including in
particular cardiac septal defects, gastroschisis and many others
[46,82] . Phocomelia (short or truncated forelimbs) has also been
shown in testing in a similar preclinical model (hamster) to that
which revealed the teratogenicity of thalidomide [46] . Dose-related
effects were found [46,60,81] . Whilst these defects appear dis-
parate and diverse, they all bear in common an arrest of cell growth
and cell migration at critical developmental stages, consistent with
the inhibition of mitosis noted with cannabis by various mech-
anisms. It has been noted that the doses used in some of these
preclinical studies were high being in the 50–300 mg/kg range [46] .
Nevertheless it is usual practice to take dose-response effects up to
maximum tolerated doses in teratogenicity studies; cannabis use
is increasing substantially in many places; the strength of cannabis
available has increased over 20-fold since the 1960s [83] ; cannabi-
noids are lipid soluble and likely accumulate to high concentrations
in many fat rich body tissues including cell membranes, myelinated
neural tissues and gonads; and cannabinoids have a long terminal
half life of excretion; so that elevated levels in preclinical stud-
ies are not necessarily of no clinical relevance. Moreover there is
virtual identity between the lists of deformities described in pre-
clinical studies [46] and those found in epidemiological studies of
human infants [82] .

Parental cannabinoid exposure has also been linked to impaired
intellectual performance, concentration and executive function,
and hyperactivity amongst human child and adolescent offspring
exposed in utero [47,84–86] .

7. Cannabis-related mitochondrial inhibition

THC has also been shown to inhibit mitochondria after both
in vitro and in vivo exposure of lung cells, brain cells and sperm
in part by increasing their expression of uncoupling protein 2
[61,85,87–91] . Cannabis pyrollysates (partially burnt products of
the smoked plant) also increase oxidative stress on many tis-
sues [52,58,78] . These �ndings are important for several reasons.
Oxidative stress is one of the leading theories of the causes of
ageing and mutagenesis [92–96] . Energy generation is important
for cells to cope with oxidative stress. Therefore the induction of
increased oxidative stress coupled with reduced energy production
and increased electron leak and production of free radical species
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Fig. 6. Dividing Cell: Chromosomes, microtubules and mitochondria. (For interpre-
tation of the references to colour in this �gure legend, the reader is referred to the
web version of this article.)
Dividing Cell; Tubulin in red; chromosomes in blue; mitochondria in green.
National Cancer Institute, University of Pittsburgh Cancer Institute,
Public Domain; https://visualsonline.cancer.gov/details.cfm?imageid=10708 .

(and in many tissues reduced transcription of anti-oxidant defence
proteins [78] ) is a powerful double edged pro-ageing insult. Mito-
chondrial dysfunction is also one of the key hallmarks of cellular
ageing [97–99] . This is also consistent with our own unpublished
data employing radial arterial tonometry of cardiovascular stiffness
(by previously described techniques [100] ) of increased cardio-
vascular ageing (as a major surrogate for organismal aging) in
cannabis exposed patients compared to both control non-smokers
and tobacco-only smokers in both cross-sectional and longitudinal
studies (unpublished data). This data in cannabis exposed patients
is consistent with other reports of accelerated aging after tobacco
and alcohol exposure [96] and after opioids [100–103] .

8. Cannabis-related gametotoxicity, zygote toxicity and
reproductive impairment

Moreover cell division, and DNA and chromosomal replication
are very energy intensive processes. This point is well illustrated by
Fig. 6 which stains the mitotic spindle, chromosomes and the dense
network of mitochondria surrounding the mitotic apparatus at the
end of anaphase. Perhaps unsurprisingly mitotic errors including
chromosomal mis-segregation have been shown to be more com-
mon in older cells [99] . Importantly it has also been shown that
improved energy production from aged oocyte mitochondria is
associated with improved functional �delity of the meiotic machin-
ery and reduced errors of meiosis in female gametes and reduced
subsequent conceptus loss [99] . Meiosis in ova is relatively error
prone [17,99,104] . Cannabis has been shown to greatly increase
the rate of zygote death after the �rst cell division by 50% [25] .
The demonstration of sperm mitochondrial functional impairment
[61] is similarly of great concern as it implies increased meiotic
errors with the potential for transmission to subsequent genera-
tion/s. Cannabinoids have also been shown to importantly mediate
several sperm speci�c critical genetic functions via CB1R includ-
ing DNA nicking in preparation for tight packing, the re-packaging
of DNA from histones to transitional proteins and then to pro-
tamines, and protection of packaged DNA [105,106] . Cannabinoids
also play key functions in the reproductive tract, where they modify
sperm activity, hypermotility and penetration, acrosome exocyto-

sis and egg penetration [61,107–109] . Cannabinoids and CB1R are
present at high concentration in the oviduct and Graa�an follicle
[61] . Exogenous cannabinoids have been shown to act as partial
functional antagonists and disruptors of these natural yet critical
endocannabinoid reactions [34,61,105,107] .

9. Other microtubule functions

Microtubules are also essential to many other cell func-
tions notably in stem cell niches and in neurons. It has been
shown that the cell cycle, particularly in S and G2 phases, gov-
erns the human embryonic stem cell decision relating to the
exit from pluripotency to cell differentiation ( via a P53/ATM-
ATR/CHEK2/CyclinB1/TGF b /Nanog spindle checkpoint pathway)
[110] , and that microtubule structures (nanotubes) mediate the
spreading of deterministic molecular signals (bone morphogenetic
protein ligand decapentaplegic) from germ line niche cells to neigh-
bouring stem cells (where it binds to its receptor Thickveins) and
thus limit the stem cell maintenance signal to germ stem cells with
which the hub support cells are in immediate contact [111] . Neu-
ronal axons contain long microtubule bundles which can be up to
one meter in length. Axons rapidly transport nutrients and pro-
teins along using dynein and kinesin microtubule-based motors at
speeds of up to 1 mm/s [15] . Hence THC based disruption of micro-
tubular function has been associated with loss of axonal direction
�nding and an increase in target location errors, and errors of axonal
sprouting [34,37] .

The enzymes which metabolize cannabinoids in the brain
(diacyl glyceryl lipase- a and monoacyl glyceryl lipase) and the dis-
tribution of CB1R change dramatically during in utero and early
post-natal development with important implications for axonal
path�nding and thus corticofugal tract de�nition, and this process
is disrupted by exogenous cannabinoids [47] . As in sperm develop-
ment, the endocannabinoid system plays a key role in such major
brain developmental processes as cell proliferation, neurogenesis,
migration and axon path�nding via CB1R, CB2R, TRPV1R, GPR55
and PPARa signalling and exophytocannabinoids act as partial
antagonists and functional disruptors of this �nely tuned system
[47] . Hippocampal volume was found to be reduced in young ado-
lescents following in utero exposure to cannabis, as have lasting
alterations in glutamate, GABA, opioid serotonin and cholinergic
muscarinic and nicotinic brain signalling [47,112] .

These effects of cannabinoids explain the confusing and para-
doxical effects of cannabis in cancer. Various cannabinoids have
been proposed to have possible therapeutic effects on tumours
and tumour growth in part by inhibition of DNA synthesis
[43,50,113–116] but, as noted above, cannabinoids have also
been linked epidemiologically with carcinogenesis. The effects of
cannabis on tubulin and its association with cell growth inhibition
explain these paradoxes – both can be true. Both cell cycle inhibi-
tion and arrest of cell growth, and occasional mutant cell escape
via chromothriptic malignant induction can occur, both related to
cannabis – tubulin interactions and in a dose dependent manner.
Interestingly the function of the critical SAC checkpoint has been
shown to be reduced in tetraploid cells due to TP53 suppression,
so such environments may make both error prone chromosomal
replication, and escape from the normal cell cycle controls, more
common [7] .

10. Other addictions

Interestingly similar comments can be made about several
other addictions. Dependency syndromes associated with alco-
hol, tobacco, opioids and benzodiazepines have been associated
with tumourigenesis [117–123] . Dependency on alcohol, benzo-
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diazepines, opioids, cocaine and amphetamine has been linked
with adverse morphological and developmental outcomes in chil-
dren exposed in utero. Most chemical addictions are associated
with foetal growth restriction [47,84,124] and many are asso-
ciated with neurological or intellectual impairment in children
exposed in utero [125] . Importantly opioids [126,127] , alcohol
[128,129] , amphetamine [130] , nicotine [131,132] and cocaine
[133] have been shown to interact with tubulin polymerization
and/or microtubule associated proteins. Indeed interference with
tubulin dynamics now provides a mechanism whereby environ-
mental agents do not need to be directly mutagenic to DNA bases
or clastogenic to chromosomes themselves, but can nonetheless
have a devastating effect on the integrity of the genetic information
by interfering with the cellular machinery of meiosis in gametes
[43,104,134,135] . Indeed all addictive drugs have been shown to
interfere with mitosis [136] and to be genotoxic [137] .

11. Epigenetic contributions to mutagenicity

It will also be noted that the discussion to this point has
not considered the epigenetic revolution which is rapidly over-
taking medicine. The origins of the Barker hypothesis of the
foetal origins of adult disease has been attributed to the obser-
vation of the increased incidence of cardiovascular disease in
children born to women exposed to the post-war famine in Eng-
land [138,139] . Since that time many environmental agents have
been linked with epigenetic change including alcohol [140–142] ,
cocaine [143–148] , amphetamine [149–152] , opioids [153–156]
and cannabinoids [41,59,157,158] . Indeed epigenomic changes
have also been described with behavioural addictions such as gam-
bling [159] , and with stress exposure [160–164] which is a major
common factor shared amongst all addictive syndromes. Whilst
some epigenetic changes have been shown to be reversible in
the short term [163] , others have been shown to be passed on
to offspring for three to four subsequent generations [165–167]
via epigenetic modi�cations in oocytes and sperm [153,167–169] .
Transgenerational transmission of epigenetic change through
altered sperm DNA methylation has also been shown for cannabi-
noids in rats [157,170,171] and humans [172–174] . The well known
immunmodulatory actions of cannabinoids also impact brain struc-
ture at sensitive developmental stages [62,175,176] and may be
transferred to offspring epigenetically [62] . Since cannabinoids
have long been known to selectively suppress nuclear histone
mRNA and protein expression [43,50,177,178] , alter the RNA tran-
scriptome [157,171,179] and modify DNA methylation in key brain
reward areas [157,170] thereby modifying all the main epigenomic
regulatory systems, it seems inevitable that we are on the thresh-
old of an exciting time to learn more about heritable pathways to
genotoxic disease. Epigenetic inheritance has also been linked with
paediatric gliomagensis [180] . Normal developmental [181] and
ageing changes [182,183] , cellular lineage speci�cation amongst
different tissues [181] , single cell memory formation [62,183–185]
and complex disease origins have been attributed in large part to
epigenetic changes [186] .

12. Conclusion

As mentioned above high dose cannabis and THC test positive
in many genotoxicity assays, albeit often with a highly non-linear
threshold like effects above low doses. As long ago as 2004 it was
said that 3–41% of all neonates born in various North American
communities had been exposed to cannabis [172] . Since cannabis is
addictive [187] , is becoming more potent [77,83,86] , quickly builds
up in adipose tissues [62,82] and seems generally to becoming
more widely available under �uid regulatory regimes [187,188] ,

real concern must be expressed that the rising population level of
cannabinoid exposure will increasingly intersect the toxic thresh-
olds for major genotoxicity including chromosomal clastogenicity
secondary to interference and premature aging of the mitotic appa-
ratus. Under such a conceptualization, it would appear that the real
boon of restrictive cannabis regimes [189] is not their supposed
success in any drug war, but their con�nement in the populations
they protect, to a low dose exposure paradigm which limits incident
and transgenerational teratogenicity, ageing, mental retardation
and cancerogenicity.
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